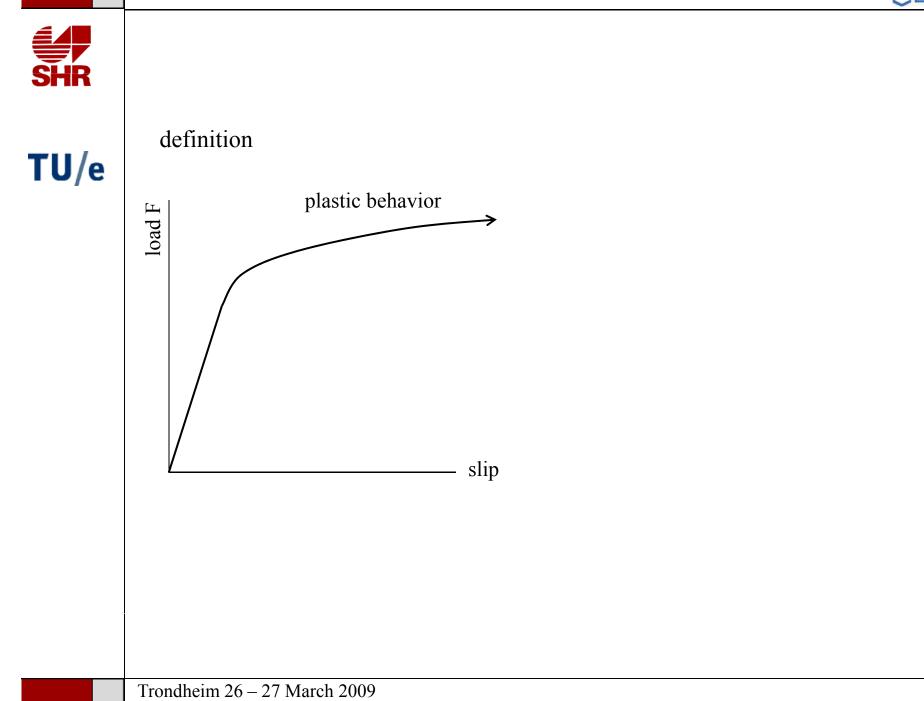


COST E55, working group 2

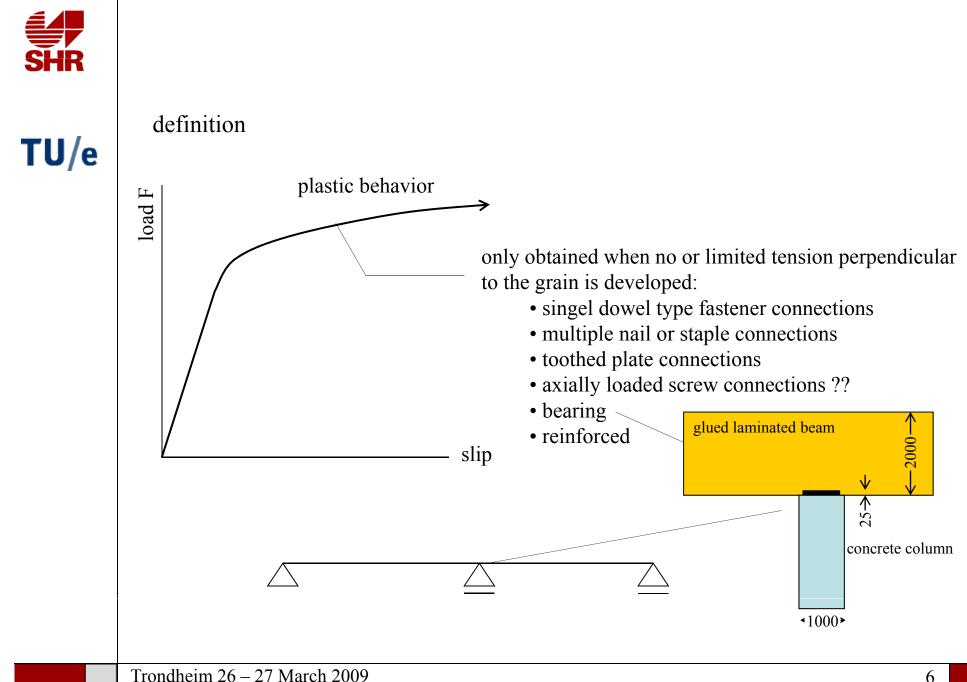
- introduction
- individual contributions
 - Ductility in connections (Thomas Bogensperger/Thomas Moosbrugger)
 - On ductility and Timber Structure Connections (Kjell A. Malo)
 - Design of timber structures consisting the plastic behavior of steel fasteners (Frank Brühl)
 - Dutility aspects of connections perpendicular to the grain (Dennis Schoenmakers/André Jorissen)
 - Shear testing of Norway spruce (Kristian Dahl)
 - Plate connectors results (Peter Rodd)
- discussion on
 - guidelines
 - draft content of a document about timber (joint) ductility


COST E55, working group 2

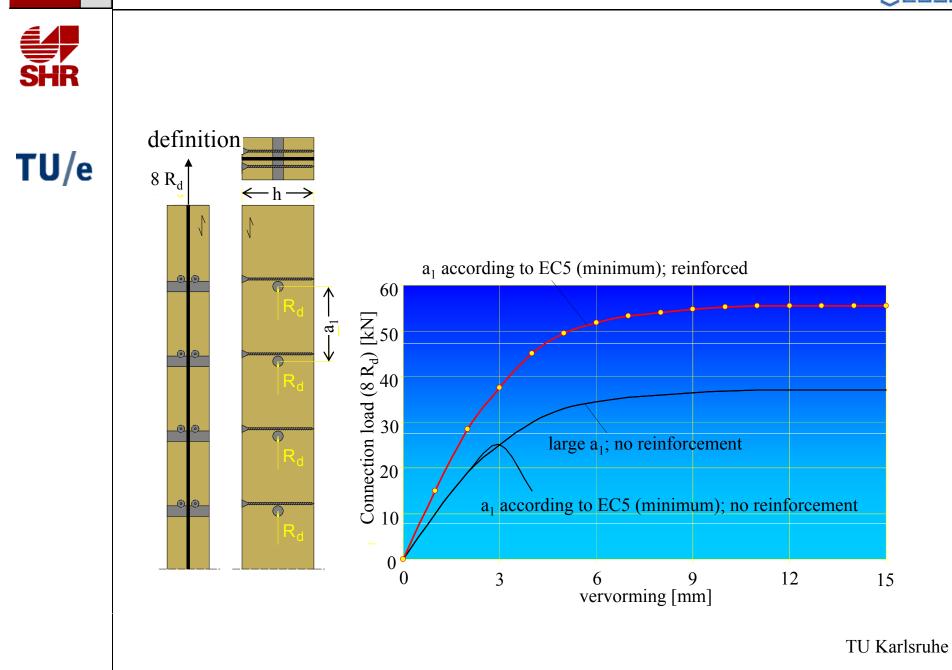
- introduction
 - definition
 - ductile behavior is important for
 - robust structures?
 - energy dissipation

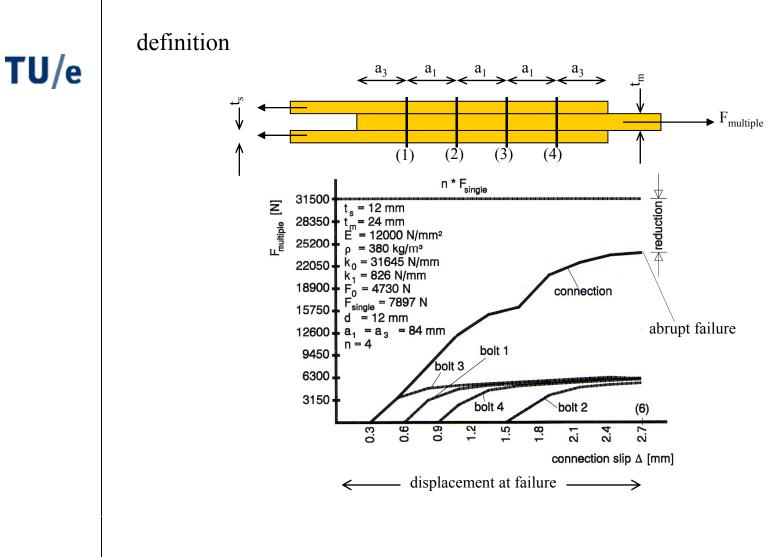
CCOSE

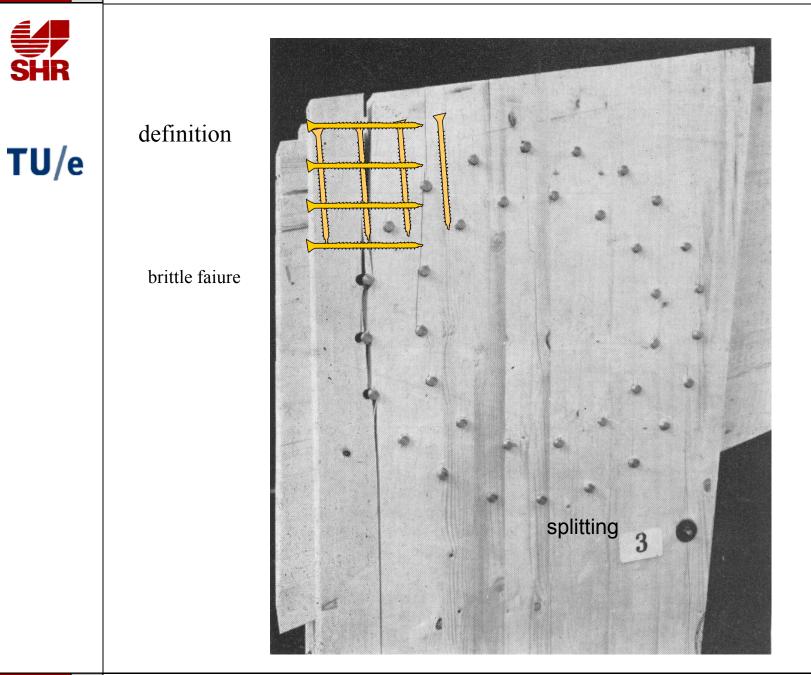
SHR definition TU/e load F $D_f = \frac{u_f}{u_y} \qquad (1) \qquad D_u = \frac{u_u}{u_y}$ (2) $C_{d} = \frac{u_{f} - u_{y}}{u_{f}}$ (3) $D_{f/u} = \frac{u_{f}}{u_{u}}$ (4) $D_{s_{u}} = \frac{K_{1}}{F_{1}} u_{u} \quad (5) \qquad D_{s_{f}} = \frac{K_{1}}{F_{1}} u_{f}$ (6) $D_{uy} = u_u - u_y \quad (7) \qquad D_{fy} = u_f - u_y \quad (8)$ $D_{fu} = u_f - u_u \quad (9) \qquad E_d = \int_{0}^{u = u_f} f(F, u) du \quad (10)$ – slip u_v 5 mm u uf



SHR definition TU/e plastic behavior load F only obtained when no or limited tension perpendicular to the grain is developed: • singel dowel type fastener connections • multiple nail or staple connections • toothed plate connections • axially loaded screw connections ?? • bearing • reinforced slip 0




SHR definition TU/e plastic behavior load F only obtained when no or limited tension perpendicular to the grain is developed: • singel dowel type fastener connections • multiple nail or staple connections • toothed plate connections • axially loaded screw connections ?? • bearing • reinforced (Blaβ, Helsinki, 2008) slip



TU Karlsruhe

COST E55, working group 2

Joint ductility

introduction

• definition

• ductile behavior is important for

- robust structures?
- energy dissipation

COST E55, working group 2

Joint ductility

introduction

• definition

- ductile behavior is important for
 - robust structures?
 - progressive collapse
 - redundancy
 - ductility

working group 3

COST E55, working group 2

- introduction
 - definition
 - ductile behavior is important for
 - robust structures?
 - energy dissipation: dynamic loading (earthquake design)

COST E55, working group 2

Joint ductility

Discussion??

COST E55, working group 2

COST E55, working group 2

Joint ductility

Presentations

- Ductility in connections (Thomas Bogensperger/Thomas Moosbrugger)
 - Design of timber structures consisting the plastic behavior of steel fasteners (Frank Brühl)
- Ductility requirements (Ad Leijten)
- Robustness assessment of timber structures with regard to ductility (Poul Henning Kirkegaard)
 - On ductility and Timber Structure Connections (Kjell A. Malo)

•Shear testing of Norway spruce (Kristian Dahl)

- Dutility aspects of connections perpendicular to the grain (Dennis Schoenmakers/André Jorissen)
- Plate connectors results (Peter Rodd)

COST E55, working group 2

Joint ductility

Discussion on:

- Guidelines: EN 1998-1 (Working group 3 document in relation to Earthquake design) Distinction between DCL (low ductility class), DCM (medium ductility class) and DCH (high ductility class) without defining ductility
- Draft content of a document about timber (joint) ductility

COST E55, working group 2

Joint ductility

Discussion on:

structural type	DCM µ≥4	DCH µ≥6
Wall panels with glued diaphraghms	Glued panels	nailed panels
connected with nails and bolts	q = 2,0	q = 3,0
Wall panels with nailed diaphragms		nailed panels
connected with nails and bolts		$q = 5,0 \ (q = 4,0)$
Trusses	doweled and bolted	nailed
	q = 2,0	q = 3,0
Mixed structures with timber framing and non-load-bearing infills	q = 2,0	-
Hyperstatic portal frame with doweled and bolted joints	q = 2,5	q = 4,0 (q = 2,5)
slenderness (dowels / bolts / nails)	$t/d > 10; d \le 12 \text{ mm}$	
sheeting material	t >= 4d; d <= 3,1 mn	ı

COST E55, working group 2

Joint ductility

• Draft content of a document about timber (joint) ductility

content	drafted by
Introduction	
general	
definitions	
relationship with robustness	
ductile timber structures	
static ductility	
dynamic ductility (seismic - overstreng	th)
joint ductility	
dowel type fasteners ; single / multiple	
nails	
screws	
bolts/dowels	
plate connectors	
glued connections	
reinforcements	
guidelines	
conclusions	
literature	
appendices	
examples	
ductility in codes	